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Theoret ica l  De terminat ion  of the Electron Dis tr ibut ion  in Benzene  by the 
T h o m a s - F e r m i  and the Molecu lar -Orbi ta l  Methods  
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The results of theoretical calculations of the electron distribution in benzene are reported. Density 
contours, both in the plane of the benzene ring and in a parallel plane at a height of 0.35 A above 
the ring, are given for the Thomas-Fermi and the molecular-orbital methods. It is shown that in 
the molecular-orbital method the ~ electrons have only a small influence on the density in the 
parallel plane, except immediately above the carbon atoms, where they contribute about half of 
the total density. As far as comparison is valid the results appear to be in reasonable agreement 
with X-ray results of Robertson and his co-workers for naphthalene. 

1. Introduction. 

Interest in the problem of calculating theoretically 
the electron distribution in organic molecules has been 
aroused by recent accurate X-ray results (Abrahams, 
Robertson & White 1949 a, b; Mathieson, Robertson 
& Sinclair 1950 a, b) giving the density distributions 
in naphthalene and anthracene. 

In view of the central position occupied by benzene, 
both in organic chemistry and in molecular theory, 
it was decided at the outset to make a detailed 
investigation of the electron distribution in benzene, 
rather than tackle at first the necessarily lengthier 
calculations for naphthalene and anthracene. Whilst 
no results exist as yet for benzene, a significant 
comparison can already be made with the experimental 
results quoted above. The extension of the work 
described here to the cases of naphthalene and 
anthracene would be straightforward but very 
laborious. 

The electron distribution in benzene reported here 
has been calculated by two quite distinct methods. 
First the statistical method of Thomas and Fermi has 
been used, and secondly a Gull calculation has been 
carried out using the molecular-orbital method. As 
the Thomas-Fermi (T.F.) method does not make the 
usual distinction of molecular theory between ~ and 

electrons, it seemed that  this method might be of 
value as a pointer to the .validity of other treatments. 

2. Use of the T h o m a s - F e r m i  method  

Besides the intrinsic interest attached to the electron 
distribution in benzene the application of the T . F .  
method is of some interest from the point of view of 
the statistical theory and the method will thus be 
described in some detail. 

* Present address: Department of Physics, The University, 
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As is well known, the T.F. method in atomic theory 
gives a useful overall representation of the electron 
density in heavy atoms. However the method has been 
restricted in its application to molecules by the 
mathematical difficulties presented by the non-linear 
character of the fundamental equation. The only 
direct at tempt to solve the T.F.  equation for a 
molecule has been made by Hund (1932), who has 
shown how a fairly good approximate solution can be 
obtained in the case of diatomic molecules. At the 
outset it was not of course clear whether Hund's 
method could be extended to systems other than those 
with axial symmetry; this work seems to show that  
the method can be successfully extended to our case. 

3. Simplif icat ion of the problem 

In the treatment of any neutral molecule by this 
method the fundamental problem is to solve the T.F. 
equation (see for example, Mott & Sneddon, 1948, 
p. 156) 

.q 

V2V = ,aVe, (1) 
where 

32xe% (2me)~ 
/ ~ -  3h 3 

for the electrostatic potential V, subject to the 
conditions that  as any nucleus is approached, V tends 
to the Coulomb potential due to that  nucleus and that  
V tends to zero at infinity. 

I t  must be admitted that  to some extent benzene 
is not well suited to a T.F. treatment owing to the 
presence of hydrogen atoms where the small 
concentration of electrons renders any statistical 
method unreliable. Thus, even in the event of an 
exact solution of equation (1) being possible for 
benzene, the results would have to be regarded with 
due caution and probably the only regions in which 
any useful conclusions could be drawn would be in 
the regions between adjoining carbon nuclei, and in 
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the interior of the ring, where the effect of the 
hydrogen, atoms would be exceedingly small. In  view 
of this,: and of a lack of knowledge as to the 
applicability of Hund's  method of solution except in 
diatomic cases, it was decided at the outset to 
simplify the problem as follows. A neutral  system of 
thirty-six electrons and six carbon nuclei arranged as 
in benzene is to be considered and the distribution of 
charge resulting from the T.F.  equation investigated. 
The assumption is made tha t  when the distribution in 
this system is known, then by simply adding to it the 
charge density contributions from six hydrogen atoms 
placed in their appropriate positions, an approximate 
distribution is obtained for benzene. Physically one 
would expect this approximation to have a negligible 
effect on the electron distribution in the interior of the 
ring and in the region between the carbon atoms, but  
tha t  the C-H bonds would not be adequately described 
in the sense of the T .F .  method (which at any rate, 
as we shall see later, does not cause enough charge to 
be pushed into the centre of a bond to give a completely 
adequate description). 

4. Method  of so lut ion 

By working in units of R, the half distance between 
neighbouring carbon nuclei, and in terms of the 
dimensionless function u defined by 

S e  
V - - - - ~ u ,  

equation (1) transforms to 
.q 

VZa = yu~,  (2) 
where ~, = # (ZeRS) ½ • 

In  our case 2R is taken to be 1.39 J~, and then V=4.44. 
Following Hund, an approximate solution is sought 

of the form 

u ----- v (rx)+v ( r z ) + . . .  +v(r6 ) ,  (3) 

where r x, . . . ,  r e denote the distances of a point from 
nuclei 1, . . . ,  6 respectively. In  the neighbourhood of 
any one nucleus an approximate solution would be 
given by taking v(r) simply as the solution for an atom, 
tha t  is (1/r)9(~,ir), where ~ is the function calculated 
by Fermi, Bush & Caldwell, and Miranda, and 
conveniently tabulated by  Gombgs (1948, p. 358). 
However, with this form for v(r), u would not satisfy 
the equation (2) at infinity for there the system 
behaves as a single atom of nuclear charge 36, and 
an asymptotic solution is 

6 
r 

A solution is therefore assumed to be of the form 

1 1 
u = - ~f(~'irlf(rl)) + - 9 0 ' i r 2 f ( r ~ ) ) + . . .  

$'1 r2 

1 9(~,iref(re) ) 

where 

(4) 

).2+6~r2 
f ( r )  = -  ~t2+r2 , (5) 

and the question to be answered is whether, for any 
value of 4, it can be made a reasonable approximate 
solution of the differential equation. Equation (5) 
corresponds to Hund's  expression for f (r)  for diatomic 
molecules, and is one of the simplest expressions 
which will give the necessary asymptotic forms at the 
six nuclei and at infinity. With u of the form (3), 

V2u __-- V2v(rl)-{- V2v( r2 )+ . . .  + V2v(r6) 

= h(rl) + h ( r 2 ) + . . . +  h(r6). (6) 
When 

v(r) =-1  cf(~,t rf(r)) , ?. 

~,[/(r) + rf'(r)]ev(r)~ 
h(r) = f(r)½ 

+ , '  [ ! f ' ( r ) + f " ( r ) ]  qY(~,irf(r)) . (7) 

With f ( r )  defined by (5), 

and 

~tg" [22-+- (6~-- 1)r ~] +6~r  4 
f ( r ) + r f ' ( r )  = (~2+r9) 2 , (8) 

f'(r)+f"(r) 222(6k-- 1) (3~'2--r9) 
= (~2+r.  P (9) 

This enables us to calculate V2u. 

Next, as in Hund's  work, the quant i ty  B, defined by  

B = ~ u ~ - - V 2 u ,  (10) 

was calculated at a number of suitable points for  
various values of 2, and the value of 2 was sought 
for which B was as small as possible over the region 
considered. As the axial symmetry  of Hund's  problem 
was lacking here, a choice of planes in which to 
calculate B had to be made. I t  was decided to consider 
points in the plane of the benzene ring and also in a 
plane parallel to the plane of the ring. This choice was 
made, first to ascertain whether the best value o f / t  
in one plane was the best value in the other, and 
secondly to facilitate comparison with the results of 
the molecular-orbital method. The distance of the 
parallel plane from the plane of the ring was taken as 
0.5R, (0.35 A), of the order of the height of the plane 
of maximum density of the ~ electrons above the 
plane of the ring in the molecular-orbital method. 
Calculations were made for /tP-- - 4, 5, 6, and it  was 
found t h a t / t  9 = 5 was the best compromise value in 
both planes. The value of/ t  thus obtained completely 
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defines the approximate solution (3) and hence the 
approximate density distribution. Unfortunately any 
estimate of the accuracy of the solution would be 
difficult. 

5. Choice of ~9 

As the value of A completely defines the approximate 
solution, a little more will be said here about the choice. 
Without  detailed tables or elaborate contours, which 
are clearly not justified here, it  is difficult to display 
the various results for B. The following qualitative 
summary should however suffice to show tha t  a 
reasonable choice can be made. 

Dividing the regions of space somewhat artificially 
into tha t  inside the ring and tha t  outside the ring, the 
following conclusions could be drawn: 

(1) At ' internal '  points in the plane of the ring a 
value 5 for A 9 was slightly better than 4, 6 being 
certainly the worst value. 

(2) At ' internal '  points in the parallel plane 5 was 
clearly better than 4 or 6. 

(3) At 'external '  points in both planes ~ = 6 was 
found to be the best value, 4 being certainly the worst. 

I t  is not difficult to see from these results tha t  a 
change for the worse results in going from 5 to either 
4 or 6, and tha t  ~t 9 = 5 is the best compromise value 
tha t  can be obtained by this method. To give some 
indication of the magnitudes of the differences B, the 
mean values of IBI/Tu~ have been evaluated for the 
various points considered for 2~" ~ 5. In  the order in 
which the regions are referred to above, the values are 
0.032, 0.022, 0.123 and 0"159. These values suggest 
tha t  the solution will be most reliable in the interior 
of the ring; which is satisfactory in view of the 
method of accounting for the hydrogen atoms adopted 
here. Also it is satisfactory tha t  as far as it is possible 
to compare them, the trends in the values of B agree 
well with those found by Hund for the case of diatomic 
molecules. 

Fig. 1. T .F .  electron-density contours in plane of ring. Outer 
contour is 0.15 e.A -a, interval is 0.2 e.A -a. Density is 
infinite at  all nuclei and to avoid complicating the figure 
contours finish at  1.35 e.A -a round the hydrogen atoms and 
at  1.75 o.A -a round the carbon atoms. 

6. The approximate  distribution in benzene 

Remembering the assumption made at the outset, the 
charge density due to six hydrogen atoms, with their 
nuclei placed as in benzene, must be added to the 
density already obtained. The T. F. method, applicable 
to heavy atoms, obviously has little justification for 

Fig. 2. T .F .  electron-density contours in a plane parallel to 
the ring and at a height of 0.35 /~ above the plane of the 
ring. Outer contour is 0.15 e./~ -a, interval is 0.2 e./~ -a. 
Density is 0"5 e.A -a immediately above the hydrogen atoms, 
and above the carbon atoms 3.8 e.A -3. Last contour shown 
is 1"75 e.A -a. 

hydrogen. A comparison of the radial charge density 
for hydrogen given by wave mechanics and by the 
T.F.  method shows, however, tha t  the two are 
considerably but  not wildly different; and to avoid 
introducing functions foreign to the T.F.  method the 
T.F.  density was used. In  any case, any conclusions 
drawn will be to a large extent independent of this, 
since the only regions tha t  will be discussed are 
between the carbon nuclei and inside the ring. The 
charge contours in the plane of the ring are shown in 
Fig. 1, and those for the parallel plane in Fig. 2. 

7. General outline of the molecular-orbital  method  

The principle of the second method used here, namely, 
the molecular-orbital method, can be described very 
simply as follows. Each individual electron is assigned 
a wave function and the total  wave function is 
constructed as a determinant,  in the usual way, from 
the one-electron wave functions, the total  wave 
function thus constructed being antisymmetrical in the 
electrons. If the total  wave function is denoted by 
T( r l . . . r~ ) ,  where rj represents all the coordinates of 
t h e j t h  electron, then the charge density due to electron 
1 will be given by 

@(1) = I I~r/12dv2"" "dT:n' (11) 

with suitable normalisation of ~ such tha t  

I @(1)dr I - -  1 . (12) 

AC5 13 
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From the form of the total  wave function it follows 
tha t  the charge density due to any other electron will 
be given by an exactly similar expression, so tha t  the 
total  density can be obtained. 

8.  C o n s t r u c t i o n  of  o n e - e l e c t r o n  f u n c t i o n s  

The ls  electrons of the carbon atoms are assumed to 
be unchanged by the formation of the molecule, and 
hence supply the first one-electron functions. To 
obtain the other one-electron functions needed, the 
2s and 2p carbon atomic orbitals are first hybridized 
in the usual manner to form trigonal orbits. I t  is 

X 

Fig. 3. No ta t ion  for the  bond  orbitals. 

now assumed tha t  'molecular orbitals' (m.o.'s) which 
serve as the one-electron wave functions in the total  
wave function, can be formed in the usual way by 
linear combination of atomic orbitals. 

Thus, for example, the m.o. based on bond Y - Z  
(see Fig. 3) and designated by b, can be written 

b --- t o r ( t r r z ) + t o z ( t r z r ) ,  (13) 

where tor(trrz ) denotes the trigonal orbit based on 
nucleus Y and directed along Y Z .  The form of tor(tr) 
is given by 

1 
tor( trrz)  = - ~  { tor (2S)+(~/2) tor (2prz)}  , (14) 

where tor(2s) and tor(2prz) are the 2s and 2p atomic 
orbitals of carbon. In  a similar way the m.o.'s based 
on the C-H bonds can be formed. These are assumed 
to be of the form 

~x = t o r ( t r r x ) + t o x ( l s  ) , (15) 

where tox(ls) is  the Is hydrogen wave function. If 
the coefficient of tox(ls) in this orbital were changed 
slightly from unity,  to allow a possible small polarity 
in the C-H bonds, the distribution in the C-I t  bonds 
would be slightly altered but  the distribution between 
the carbon atoms and in the interior of the ring would 
almost certainly be negligibly affected. Each of these 
orbitals has axial symmetry  about the particular bond 
on which it is based; they are the a orbitals. From the 
2 p z  atomic wave functions (the z axis being 
perpendicular to the plane of the ring) additional 
orbitals, the z orbitals, are formed. These can be 
written in the form (Mayer & Sklar, 1938) 

too = (PI + P 2 - ~ P a - ~ P 4 + P s + P 6 )  

to1 = (Pl + o~p~ + 0)2p3 - -  P4 - -  °)P5 - -  °)2P6) 

to9 = (p l+w~Pg--o~ps-} -p4-} -w~ps- -wp~)  (16) 
to3- -  ( P l - - P ~ + P 3 - - P 4 ÷ P 5 - - P 6 )  
to4 --- (Px - -  O')P2 n t- 0-)2P3 -~- P4-- O-)P5 -~- 0")2P6) 

to5 : (Pl - -  0)9"p9.-- o.)p3-- P4-~- 0.) 9"p5-~- (.op6) 

where P l . . -P6  denote the 2pz  orbitals based on Y, Z, 
etc., and co---exp(i~/3). 

The electrons are then allocated as follows: two in 
each of the Is orbits, a total  of twelve being thus 
accommodated; two in each of the a orbitals, twenty- 
four electrons being accommodated in these. Six 
electrons remain and in the ground state of the 
molecule, which we are considering here, the three 

orbitals of lowest energy (tOo, tol, tos) are each doubly 
filled. 

9.  A t o m i c  w a v e  f u n c t i o n s  

For carbon, Slater wave functions have been used in 
the following calculations (Slater, 1930). A defect of 
these wave functions is tha t  to(2s) and to(ls) are not 
orthogonal. In  the present work this is remedied in 
part  by writing for b, instead of (13) 

b = 7 l [ t o r ( t r r z ) + V / z ( t r z r ) + ~ . t o r ( l s ) + / t V / z ( l s ) ] ,  (17) 

where 2 is chosen so tha t  b is orthogonal to tot(Is) 
and toz(ls), and r/ is the normalizing factor. Using 
Slater wave functions, 

n - -  0.542, 2 -- --0"212. 

Similarly, c~ is written in the form 

o¢ = l F l [ t o r ( t r r x ) + t o x ( l s ) + p t o r ( l s ) ]  , (18) 

where # is chosen so tha t  c~ is orthogonal to y~r(ls). 
I t  is found that  

7/2 = 0.543, # = - -0 .205.  

The Is orbitals are now orthogonal to all the orbitals 
used in describing the molecule except tha t  the ls  
carbon orbital on atom r (say) is not strictly orthogonal 
to the Is orbital on atom s, nor to the a-bond orbitals 
which do not terminate on atom r. Such lack of 
orthogonalization will be small and can certainly be 
neglected with safety. 

10.  E x p r e s s i o n  f o r  c h a r g e  d e n s i t y  

Let us denote the ls  functions by s l . . . s  s and the 
wave functions Y~0, tol, tos, by ~1, ~ ,  and ~s. The 

total  wave function is now written in the usual 
determinantal  form, in terms of s~ . . . s  s, ~h. . .~a ,  
a . . . f  and ~ . . . ~ .  However a . . . f ,  o¢...~ are not 
orthogonal and in this form the problem cannot be 
easily handled. From a property of determinants, 
however, linear combinations of a . . . f ,  co... $ may be 
taken, and apart  from a numerical factor multiplying 
it the determinant will be unchanged. Thus, still 
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unnormalized T can be written in a determinantal 
form with ~ 1 . . . ~  replacing a . . .  ~, where ~ . . . ~ x +  
are suitable linear combinations of the a . . . ~ .  A 
convenient choice is 

q91 = 

q)2 : 

C~3 ~ -  

q)6 : 

a + b + c + d + e + f  
a + a>b + o~c--d--we--w +f 
a + co+b--mc +d-+-o,)~e--o,)f 
a - -b+c- -d+e- - f  
a--o.)b + eo~c +d--we + c@f 
a--o)~b--wc--d+w~e~wf 

(19) 

and similarly ~7 to ~1~ are formed with a . . .  ~ replacing 
a . . . f .  I t  is then easily shown that  the only non- 
orthogonalities occurring are between ~i and ~j+6, 
where j = 1 . . .  6, and a convenient notation is 

I cf~cpkdv = aj, k. (20) 

From this point two procedures are possible. One is 
to use a method developed by Lennard-Jones (1931) 
for treating determinantal forms in which the one- 
electron functions are not orthogonal; the other is to 
proceed to form two new wave functions which are 
orthogonal, from ~i and ~i+6. The second procedure 
is the more convenient here though of course both 
lead to the same result. Thus, from the wave functions 
T~ and ~+~ a wave function 

ZJ = ?'/i (~i+ ~ + ~ )  (21) 

is constructed such that  

I = o ;  

that  is 
ai, i+6~-~* = 0 ,  

or  
(~ = --a1,~+6, ~i = --a~+6,1, (22) 

and 
1 / l~ / j [~  = l+~a~,~+~+(~*a]+6,~+(~*(~. (23) 

We introduce now the convenient notation 

a~, ~+~a~+~, + ~ A~, ~+~. (24) 

Then 
1/Injl ~. = 1--Aj, ~+6. (25) 

Thus the wave functions Zi, qi+s(J = 1 . . . 6 ) a r e  
mutually orthogonal, and the complete set of one- 
electron wave functions are now completely orthogonal 
(remembering the assumption about the ls wave 
functions). Then the total charge density is given by 

e = 2 is/= + . ~  i~jl = +_Y'  Iz~.l = + @j+~l = , (26) 
~=1 ] = I  j=l "= 

the factor 2 arising because all the orbits are doubly 
occupied. In this expression all the one-electron 
functions are assumed to be normalized. I t  is clear 
that  if ~ is integrated over all space the value of the 
integral will then be 42, the total number of electrons 
in the system. From (21) 

Oj q~j+6cfj+ 6j Ojcpj+~cpj+~ 6 = ~ _ ,  ~ j~ .+Ojq~.c f i+6+ . . . . 
j= l  j= l  I - - A j ,  j+6 

(27) 
Introducing ~bj, k = ~*~k, ~ can be written 

e = 2 Is/~ + [:~jl ~ + 

~qb"  '+qb'+6"+6--(a'+" 'qb" '+6+ai"+'qbi+" ')] . (28) 

i=1 1--Ai, i+6 

11. C a l c u l a t i o n  of  

In order to calculate the overlaps aj, j+6, the values 
of the overlaps between the original m.o.'s a . . . f ,  
~ . . .  ~, were needed. These were calculated using the 
wave functions described previously and are given 
below, Sa~ denoting I afldT,; a and fl being defined by 
equations (17) and (18). 

S~ ----- 0.1191 S~  -- 0.1307 S~  -- 0.1196 
Sac = 0.0917 S~ ----- --0.0453 S~v ---- 0.0045 
Sa~ ----- 0"0591 Say = --0"0100 S~ -- 0"0019 

Fig. 4. ~t electron-densi ty contours in a plane at  a height  Of 
0.35 A above the  plane of the  ring. Outer  contour  is 
0.15 e.A -a, interval  is 0.2 e./~ -a. All contours  are shown. 

Fig. 5. Molecular orbital electron-densi ty conteurs  in the plane 
of the  ring. Outer  contour  is 0.15 e./~ -a, interval is 0.2 e.A -3. 
To facilitate comparison with the  T . F .  contours,  last 
contour  shown is 1-75 e.A -a. The next  contour,  1.95 e.A -3, 
defines the  separate carbon atoms.  

13" 
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The actual calculation was carried out in terms of 
a . . . f ,  ~ . . .  $, so that  ~ was written in terms of these 
wave functions. ~ was then evaluated on a mesh of 
points, first in the plane of the ring and then in a plane 
parallel to it. The z~ electrons make no contribution 
to the density in the plane of the ring since the wave 
functions describing them have nodes in this plane. 
The parallel plane was taken at a distance of 0.5R 

Fig. 6. Molecular orbital electron-density contours in a plane 
parallel to the plane of the ring and at a height of 0.35 A 
above the plane of the ring. Outer contour is 0.15 e.A -3, 
interval is 0.2 e.A -3. All contours are shown. 

(0.35 /~) from the plane of the ring; this is the same 
distance as in the T.F. calculation already described. 
The rather surprising feature is that  even in this plane 
the density due to the a and Is electrons considerably 
outweighs that  due to the ~ electrons, except 
immediately above the carbon atoms where the 
electrons contribute about half of the total density. 
For interest the density contours due solely to the 

electrons are shown in Fig. 4; the total density 
contours at intervals of 0.2 e.~ -3 are shown, for the 
plane of the ring in Fig. 5 and for the parallel plane in 
Fig. 6. 

12. Comparison and discussion of results  

If the contours for the total density as given by the 
two methods are compared the following conclusions • 
can be drawn. 

(i) Plane of ring 
In the interior of the ring the variation of density 

given by the T.F. method is less rapid than that  given 
by the m.o. method, as can be seen by the closer 
packing of the m.o. contours. The value at the centre 
of the ring is 0.29 e.A -8 by the T.F. method and 
0.20 e.A -3 by the m.o. method. The positions of the 
0-55 e./~ -3 and the 0.95 e.A -8 contours inside the ring 
agree reasonably well with each other and also with 
the results obtained by Robertson for naphthalene. 
The bridge values, that  is the values at the centre 

of a line joining adjacent carbon atoms, are of some 
interest. The values given by the two different 
theoretical methods differ quite considerably, the T.F.  
method giving 1.2 e.A -3 and the m.o. method giving 
1.9 e./~ -3. Whilst it is not strictly permissible to 
compare these results with Robertson's values, one 
might suppose that  the bond in naphthalene which 
would approximate most closely to a bond in benzene 
would be an end bond; this has a length of about 
1.395 /~, that  is about the same length as that  of a 
C-C bond in benzene, and it is farthest from the 
effect of the excess carbons in naphthalene over those 
in benzene. For these end bonds Robertson gives a 
value slightly in excess of 1.5 e.A -3, a value which 
lies between the two theoretical values. One other point 
of some interest concerns the peak values at the 
carbon nuclei. With the T.F. model the density is 
infinite at the nuclei, a well known defect of the model. 
With the m.o. model the density is very large, around 
830 e.A -8. However, in these calculations it has been 
assumed that  the atoms are fixed. Higgs (1951) has, 
however, recently shown that  the effect of vibrations 
is to reduce greatly the peak value of the density, 
so that  comparison of our results near the carbon nuclei 
with Robertson's is meaningless. 

Not much can be said at the moment about the 
distribution external to the ring, except that  the T.F. 
method will be unreliable in the region of the hydrogen 
atoms and will over-emphasize their presence. The 
work of Robertson gives the 0.5 e.• -3 contour in 
rough outline only and comparisons will not be very 
significant. But the general agreement appears to be 
reasonable. 

(ii) Parallel plane 
The distributions here are quite similar to those in 

the plane of the ring. The peak values in this plane 
differ very considerably, 3.8 e./~ -3 by the T.F.  
method, 1.8 e.A -~ by the m.o. method. The 'atoms' 
are much more pronounced again in the T.F. method 
than in the m.o. method, and the general variation of 
density is more rapid for the m.o. method. The 'bridge' 
values are for the T.F. method 0.81 e.A -~ and for the 
m.o. method 1.5 e.A -3 whilst the values at the centre 
are 0.25 e.~-3 and 0.17 e.A -~ respectively. A surprising 
feature of the m.o. results is the small contribution 
due to the ~ electrons, and in view of the close 
interpenetration of a and ~ electrons it seems to us 
quite remarkable that  precise calculations can be made 
of the properties of organic molecules in which only 
the ~ electrons are considered. 

13. Conclusion 

Considering the nature of the approYimations involved 
in both the T.F. and the m.o. methods, and the 
difference in view point of the two methods, the 
distributions are in reasonable agreement with each 
other, and with the experimental results for 
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naphthalene as far as comparison is valid. The m.o. 
method seems to over-emphasize the amount of charge 
between the atoms, whilst the T.F. method tends to 
exaggerate the presence of the atoms at the expense 
of the 'bond' character. Also, as always, it should 
be remembered that  the T. F. method gives poor results 
near the nuclei and at large distances, and that  to 
some extent therefore charge contours 'flatter' its 
results. The results must await experimental work on 
the actual distribution in benzene before any more 
detailed discussion can be given of the relative merits 
of the two methods employed here. 
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Particle Size Distribution from Small-Angle X-ray Scattering 
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A solution of the integral equation describing the intensity of X-ray scattering at low angles by a 
non-uniform collection of independently scattering spherical particles is given. The final result is in 
a form such that the particle-size distribution can be calculated by integration. The resolvent kernel, 
which solves the integral equation, is shown to be a combination of half-integral order Bessel 
functions, and therefore obtainable from known tables. Utilizing the known scattering form for a 
single-sized group of spherical particles as illustration, the expected d-function type of distribution 
is shown to result. The result obtained here can also be applied to the visible light scattering of 
dilute, solutions of polydisperse macromolecules. 

Introduct ion  

During the past several years, small-angle X-ray 
scattering methods as a means for determining particle 
size have come into greater prominence. The theory 
of Guinier (1039, 1943, 1945; see also Hosemann 
1930 a, b), which served to interpret these results, was 
based on the independent scattering of a collimated, 
monochromatic beam by a system of equally sized 
spherical particles. The ideal character represented by 
such a set of assumptions, and the fact that  one rarely 
encounters such systems within the laboratory, has 
stimulated research into such questions as the effect 
of particle shape, particle size distribution, and 
particle-particle interference (Patterson, 1939; Shull 
& Roess, 1047; Jellinek, Solomon & Fankuchen, 1946; 
Bauer, 1945; Roess, 1046; Yudowitch, 1949; L u n d &  
Vineyard, 1949). Bauer (1945) and Roess (1946) have 

derived methods for obtaining, by analytic means, 
the particle-size distribution from the corrected 
experimental data, and Jellinek, Solomon & Fankuchen 
(1946) have done likewise using an approximate 
geometric method. 

The analytical expressions obtained in both these 
cases are fairly complex, and, so far as is known, have 
not been used for this purpose. We have therefore 
derived an expression which allows us to obtain the 
particle-size distribution by numerical integration. 
The assumptions used are similar to those mentioned 
above, i.e. spherical particles and negligible inter- 
ference. To take also the latter into account would 
necessitate the introduction of a second distribution 
function, that  of the interparticle distances. Analysis 
of a set of scattering data for these two parameters 
would become extremely difficult. 


